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Biological tissues are made from nano-composite materials and given the recent interest
in manufacturing synthetic nano-composites an analysis of natural nano-composites
seems a worthwhile exercise. There is also potential for extracting natural nano-fibres
and using them as reinforcements in other materials. In this paper a hierarchical mechanical
model is formulated to describe potato tuber tissue and the model is used to back calculate
the properties of cell wall nano-fibres. The model contains two structural levels,
the cell structure and the cell wall structure. Material properties are assigned at the level
of cell wall microfibrils (nano-composite fibres). Force deflection data from the compression
of cubes of potato tissue were fed into the model and the properties of the cell wall
microfibrils predicted. The modulus was found to vary with strain, but had a maximum
value of 130 GPa, which is close to predictions from theoretical chemistry for the stiffness
of cellulose microfibrils. At 8% wall strain (the value at which failures were suspected to
begin), the stress was predicted to be 7.5 GPa which is also close to theoretical chemistry
predictions for the strength of cellulose microfibrils. The large strains and decreasing
stiffness indicate the influence of polymers other than cellulose.
C© 2000 Kluwer Academic Publishers

1. Introduction
In the last decade there has been growing interest in
the manufacture of composite materials that are rein-
forced with nano-fibres [1, 2]. However the fact that
many biological tissues are nanocomposites is often
over looked. Often there is a hierarchy of composite
structure, down to a molecular scale. For example in
plant tissues, at the nano-scale primary cell wall looks
like a woven mesh [3]. Each strand of the mesh is com-
posed of cellulose microfibrils, hemicellulose polymers
or pectins, or mixtures of all three. The gaps between
fibres are probably filled with pectin gel. This cell wall
encloses a living protoplast, which regulates water up-
take and is capable of exerting a turgor pressure on the
cell wall. At the micro scale individual cells are con-
nected to their neighbours to form tissues and several
tissues may combine to form an organ. By analysing
these tissues we may be able to learn a great deal about
the construction of hierarchical nano-composite mate-
rials and we may also be able to extract and use natural
nano-fibres [4]. Huge quantities of these nano-fibres are
potentially available in the form of plant primary cell
walls, often as waste products from agriculture.

However these tissues are difficult to analyse using
standard techniques. The properties of the nanoscopic
fibrous components cannot be physically measured
without extracting them from the tissue, which may
result in significant chemical or mechanical damage.

An alternative is to back calculate their properties from
the tissue properties. This is difficult because most bi-
ological tissues do not obey Hookean elasticity the-
ory, instead exhibiting large deformation, non-linear,
mechanical properties. Many techniques for describ-
ing this behaviour have been proposed [5–8]. How-
ever most of these neglect the complex hierarchical
structure of the tissues, therefore the parameters in the
equations do not have a physical significance [8–13].
Attempts have been made to produce structural mod-
els based on hyper elasticity, that explain biological
material constants [14–16]. However most are based
on linearly elastic components and it is likely that
the component polymers have non-linear mechanical
properties.

In this paper we will make use of the structural ap-
proach to develop a hierarchical description of plant
tissue mechanical properties down to the level of cell
wall components. We will then use this model to back
calculate cell wall microfibril properties. Rate depen-
dent behaviour will not be investigated in this paper.

2. Model
This model is based on the structure of potato tuber
tissue in which the cells are well stuck together and
there are few air spaces. This means that a living turgid
piece of tissue (or one where the cells are at incipient
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plasmolysis) should deform at constant volume,
provided that the rate of deformation is sufficiently
rapid to avoid significant fluxes of water out of the
living cells (see results). Also in potato tuber tissue
there is very little preferential orientation of the cells so
that macroscopically large regions of tissue are almost
isotropic. Therefore a cube of tissue should remain flat
sided during compression provided that end effects are
negligible (see results). Deformation of such a structure
at constant volume can be described in the following
way:

y→ y+1y. (1)

x→ x√
1+ 1y

y

. (2)

z→ z√
1+ 1y

y

. (3)

wherex, y, z refer to the global cartesian co-ordinates
of a volume of tissue. Assuming that every individual
cell within the tissue also deforms at constant volume
and that deformations are affine [14] (we have tested
this assumption in a number of tissues including potato
and found that it is valid down to a micrometre scale,
Hepworth unpublished) it is possible to describe how
a flat cell face at any orientation in space within the
tissue will deform. Observations of deforming tissue
have shown that these faces do remain flat during de-
formations (Hepworth, unpublished) i.e. they do not
bend significantly (except when they are next to an air
filled space). The change in dimensions1Li of cell wall
faces (Fig. 1) can be calculated from vectorial analysis
of the cell wall faces based on the globalx, y, z axes of
the tissue as follows.

1Li =
√
1L2

X +1L2
Y +1L2

Z . (4)

whereL X, LY andL Z are the components of dimension,
with respect to thex, y andz co-ordinate axes of the
tissue.

Figure 1 Depiction of a cell wall face in three-dimensional space.

The total work done (W) within the solid wall mate-
rial, as a result of the deformation, will be equal to the
sum of the energy stored in every cell wall, 1 ton [14];

W =
n∑
1

∫ 1Li

0
f (1Li ) dLi (5)

where f (1Li ) is the force, calculated from a function
of the change in wall dimensions. Compressive strains
of thin cell walls probably require negligible force. At
the nano scale the cell wall looks like a loosely woven
fabric [3] and such a structure would require very lit-
tle force to compress even if the gaps between fibres
are filled with polysaccharide gels. Therefore the de-
formation energy stored in the solid elements is due to
tensile strain and is balanced by the action of a fluid
pressure (through electro chemical interactions and hy-
drogen bonding). In many tissues there will be a fluid
pressure and thus a pre-stressing of the components
in the unloaded state. This will have to be taken into
account, so that the potential energy equations for the
individual components are started from the appropri-
ate level of pre-stress. During a deformation the in-
crease in fluid pressure (P) will be equal to the applied
stress.

If we treat the cell wall as a material then in order
to evaluate the stress and hence the modulus (slope
of the curve) fromf (1Li ) we have to make assump-
tions about the form off (1Li ). For example we could
assume that the cell wall behaves as an incompress-
ible neo-Hookean material and follow the analysis of
Chaplain [8] to define a strain energy function for cell
wall material. However the problems highlighted in the
introduction will then be introduced.

There is a different solution, which is to resolve each
cell wall face into its constituent fibrous components.
We will define a microfibril as a composite fibre of
cellulose, hemicellulose and pectin, with its long axis
parallel to the direction of the cellulose. Each cell wall
face is modelled as a mesh of composite microfibrils.
These microfibrils are orientated at particular angles
within the cell wall faces. Each microfibril occupies a
certain volume and is separated from its neighbour by
a space, which may be filled with water and polysac-
charide gel. The deformations of the cell wall faces
described in Equation 4 will result in stretching, ro-
tation or compression of these microfibrils depending
upon the angle at which they lie within the wall and
the angles that the wall makes with the global axes.
The deformation that a particular microfibril develops
when the surface area of the face is changed can be cal-
culated as in Equation 4, by describing the dimensions
of the microfibrils, relative to the 2-D co-ordinate axes
of the cell wall faces.

The sum of potential energies in Equation 5 can now
be re-written with a second hierarchical level ofk to l
microfibrils.

W =
n∑
1

( l∑
k

∫ 1Lm

0
f (1Lm) dLm

)
(6)
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The total potential energy of the piece of tissue after
a compressive deformation is the sum of the tensile
deformation of every composite microfibril in every
cell wall.

Using Equation 6 the functionf (1Lm) for microfib-
rils can be mapped out as follows. Many small in-
crements of tissue deformation are performed and for
each increment the average change in deformation of
the microfibrils is calculated (total change in deforma-
tion/number of microfibrils with positive strain). Also
at each step the average increase in work is calculated
(total increase in W/number of microfibrils with posi-
tive strain). Thus the stress/strain curve of an average
microfibril at this particular rate of deformation, can be
back calculated form the energy function of the whole
tissue.

For this simulation the cell wall was constructed of 4
layers of microfibrils, each one being 0.25µm thick. In
one layer the microfibrils are aligned along the 1 axis,
in another they are aligned along the 2 axis and in the
other two layers they are aligned at 45◦ to these axes.
Each microfibril was defined as being 225 nm2 in cross
sectional area and separated from the next microfibril
in the same layer by 70 nm (based on measurements
from electron micrographs provided by M. McCann
at the John Innes Institute). This is a larger cross sec-
tional area than for individual cellulose microfibrils,
which have a width of 5–10 nm [3] and therefore a
cross sectional area of 20–100 nm2. However the unex-
tracted microfibrils in the images examined were prob-
ably coated in hemicellulose and there are many points
where two or more microfibrils lie very close together
and may be physically joined to act as a single me-
chanical unit. Therefore we have taken this larger cross
sectional area of 225 nm2 as representative of a com-
posite microfibril that may contain more than a single
cellulose microfibril and also hemicellulose polymers.
If individual cellulose microfibrils were taken as single
mechanical elements then both the cross sectional area
and the average distance between microfibrils would be
less than the value used here, but the calculations would
not be affected by using smaller microfibrils but more
of them.

For a given deformation along theY axis, values of
1Li and thus also for1Lm were calculated, using a
matrix, for all walls at different orientations in the sys-
tem. Values of change in tissue potential energy were
obtained, from force deflection experiments carried out
on cubes of potato that had been equilibrated in a very
slightly hypertonic solution (so that the cell walls were
not pre-stressed).

3. Methods
The variety of potato used was Maris Piper. Commer-
cially grown tubers were stored on trays at 5◦C for a
maximum of one week before being used. Only tubers
with an average diameter between 6 and 8 cm were
used and these were selected to be as near spherical as
possible. This should help to reduce the small amount
of anisotropy [17] which is probably correlated with
differences in thex, y, andz-axes lengths. From these,
2 cm by 2 cm by 3 cm blocks of tissue were cut. The

axes of the blocks were always kept the same and speci-
mens were compressed in they direction. The blocks
of tissue were placed in buffered 0.2 M manitol so-
lution [18]. This is a very slightly hypertonic solu-
tion [18], therefore the cells should be just below in-
cipient plasmolysis. This can be detected in the force
deflection curves as a small initial toe region of very
little increase in force with deformation. It was also
checked using a pressure probe and a measurement of
zero pressure was made. Above incipient plasmolysis
this toe region disappears. Blocks were left to equi-
librate for 24 hours. Prior to testing the blocks were
re-cut into smaller cubes using small guillotines with
mounted razor blades. The re-cutting was designed to
eliminate surface tissue that may have begun to degrade
during the equilibration.

Force deflection data were recorded during compres-
sion tests using a Davenport Nene DN10 testing ma-
chine. Cubes or cylinders were placed on a flat metal
base on the test machine, covered in buffered manitol
with a pipette and then compressed using a flat plate at-
tached to the load cell. The loading rate was 10 mm/min
and the maximum duration of a test was 1 minute. For
the calculation of tissue volumes during testing the ma-
chine could be momentarily halted and the width or
diameter (for cylinders of tissue) measured using elec-
tronic callipers.

Because of the isotropic nature of the tissue and
the variable shapes of the cells, an even distribution
of cell wall face orientations, over all possible orien-
tations, was assumed. This assumption was corrobo-
rated by measuring the projected angles of cell walls
in a section of tissue using light microscopy and image
analysis [19]. The dimensions of the cells were also
measured.

4. Results
The following average measurements of cell dimen-
sions were obtained on 100 cells from 5 tubers. The
diameter was 212µm (s.d. 22µm), the number of sides
in a cell cross section was 5.5 (s.d. 0.9µm), the length
of a side was 115µm (s.d. 47µm) and the thickness of
cell walls was 1µm (s.d. 0.5µm).

When 1 cm cubed pieces of potato tissue were com-
pressed, the faces remained flat and end effects were
minimal. This means that there was little friction be-
tween the tissue and the metal plates (probably because
of fluid lubrication). Measurement of the volumes of
15 cylinders of potato tissue undergoing compression
showed that on average there is a small but significant
decrease of 16 mm3 in volume at 22% compression
(single factor analysis of variance,P< 0.05). However
there were damaged cells on the cut surfaces of the
potato cylinders. Compression of these will lead to a
small reduction in volume. This was calculated to be
15.3 mm3 (assuming that each damaged layer is the
same thickness as the average radius of cells). This
accounted for the volume reductions up to 22% com-
pression. Beyond this level of compression the volume
significantly decreased.

The force deflection curves for 5 cubes of potato tis-
sue (all 1 cm cubed) are shown in Fig. 2. From this a
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Figure 2 Compression curves for 5 cubes of potato tissue in 0.2 M
manitol.

force deflection curve for individual microfibrils was
calculated (Fig. 3). The highest value of stiffness along
this curve of 130 GPa is very similar to the value of
135 GPa predicted for cellulose microfibrils [20, 21].
The maximum microfibril strain was chosen as the
value after a tissue deformation of 22%. This is the max-
imum tissue deformation at which the constant volume
assumption is applicable at this particular rate of tis-
sue deformation. The value of microfibril stress at this
level of deformation was calculated as 7.5 GPa, which
is also similar to the value of 7–8 GPa predicted for the
failure of cellulose microfibrils by chain scission [20].
At large strains the modulus falls significantly.
This may indicate the influence of polysaccharides
such as hemicelluloses on the composite microfibril
properties.

5. Discussion
We believe that this is the first attempt to back calcu-
late the properties of primary plant cell wall compo-
nents from tissue properties. It may also be the first
time that non-linear properties of nanoscopic fibrous
components have been analysed in biological tissues.
Obviously the potential errors in this type of analysis
are large, but we think that by using potato tissue, with
its isotropic structure, we have kept them to a minimum.
The measurements could be improved with a much
more detailed analysis of cell wall face shapes and ori-
entations. However we are encouraged by the fact that

Figure 3 Calculated stress strain curve for cell wall composite
microfibrils.

the predicted properties of the microfibrils are similar
to those calculated from theoretical chemistry for cellu-
lose microfibrils. The predictions for the properties of
cell wall components could also be checked by using the
equations in reverse on other plant tissues i.e. inputting
microfibril properties (assuming that they are similar)
and predicting tissue properties. If these predicted prop-
erties are correct then plant cell wall microfibrils have
great potential for re-inforcing man made materials. Po-
tentially they can absorb large amounts of energy. From
the plants point of view it makes sense to make the cell
walls from a high performance material because very
little of it is then required to produce an effective struc-
ture (less than one percent of potato tissue is cell wall
material).

By treating the cell wall as a structure, many of
the problems associated with the engineering analy-
sis of materials that show large elastic deformations,
are avoided. There are two levels to the structural hi-
erarchy, the tissue level and the cell wall level. At the
tissue level there is constant volume deformation up to
22% compression, during which the cell walls are re-
orientated, stretched and compressed according to their
orientation in space. At the cell wall structural level the
fibrous elements which make up the cell wall appear
to have the theoretical stiffness of cellulose microfib-
rils. The predicted failure strains and hence strengths
of microfibrils are large when compared to the fail-
ure strains of cellulose in secondarily thickened fibre
cells such as flax. However these secondarily thickened
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cells tend to be compromised by pitts and other struc-
tures that may significantly reduce the strength. They
often have a multipurpose function to play, which may
include the conduction of nutrients up and down the
stem. Stiffness rather than toughness may be more im-
portant for secondarily thickened cells if part of their
function is to increase the bending stiffness of stems.
Also it is common for the strength of synthetic fibres
to increase as the diameter is reduced [22] and nat-
ural fibres probably follow the same trend. Further
experimentation would be required to determine the
true failure strain of the microfibrils and the influence
that polymers other than cellulose have at these large
strains.

The experiments and calculations performed in this
paper relate to potato tissue, which had initially been
equilibrated to just below incipient plasmolysis. If the
tissue was initially turgid then the cell walls would al-
ready have been loaded and the microfibrils stretched.
This means there would be a pre-stress and strain that
would have to be added into the matrix calculation. If
the cells were flaccid then upon deformation of the tis-
sue, re-orientation of cell wall material would be able
to occur without the microfibrils being stretched. The
deformation would then be described by standard the-
ories for thin walled foams [23], until the volume was
reduced to that of the fluid contents, at which point the
above model could be used.
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